Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(42): e202301036, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150751

RESUMO

Hydrogen peroxide (H2 O2 ) electrosynthesis via the 2e- Oxygen Reduction Reaction (ORR) represents a highly challenging, environmentally friendly and cost-effective alternative to the current anthraquinone-based technology. Various lightweight element hetero-doped carbon nanostructures are promising and cheap metal-free electrocatalysts for H2 O2 synthesis, particularly those containing O-functionalities. The exact role of O-containing functional groups as electroactive sites for the process remains debated if not highly controversial. Herein, we have reported on the covalent exohedral functionalization of the outer surface of extra-pure multi-walled carbon nanotubes (MWCNTs) with discrete O-functional groups as a unique approach to prepare selective electrocatalysts for the process. This kind of decoration has added fundamental tiles to the puzzling structure/reactivity relationship of O-containing carbon-based catalysts for ORR, clearing doubts on the controversial role of hydroxyl/phenol groups as key functionalities for the design of more performing 2e- ORR electrocatalysts.

2.
ChemSusChem ; 16(5): e202300238, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36905108

RESUMO

Invited for this month's cover are collaborating teams from academia-the French ICPEES and IS2M of Centre national de la recherche scientifique (CNRS) and the Italian ICCOM of Consiglio Nazionale delle Ricerche (CNR)-and industry with the participation of the ORANO group. The cover picture shows a CO2 -to-CH4 process promoted by nickel nanoparticles supported on depleted uranium oxide under exceptionally low temperature values or autothermal conditions. The Research Article itself is available at 10.1002/cssc.202201859.

3.
Chem Commun (Camb) ; 59(11): 1537-1540, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36661282

RESUMO

Nickel(0) nanoparticles coordinated to NHC ligands bearing N-coordinated cinnamyl moieties were readily prepared by reduction of a [NiCpBr(NHC-cinnamyl)] complex with methyl magnesium bromide. The combination of a strong σ-donor NHC ligand with a π-coordinating appended cinnamyl moiety likely prevents nickel(0) nanoparticle aggregation to larger inactive species, and allows the effective and (Z)-selective semi-hydrogenation of alkynes and ynamides.

4.
ChemSusChem ; 16(5): e202201859, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36331078

RESUMO

Ni-based catalysts prepared through impregnation of depleted uranium oxides (DU) have successfully been employed as highly efficient, selective, and durable systems for CO2 hydrogenation to substituted natural gas (SNG; CH4 ) under an autothermal regime. The thermo-physical properties of DU and the unique electronic structure of f-block metal-oxides combined with a nickel active phase, generated an ideal catalytic assembly for turning waste energy back into useful energy for catalysis. In particular, Ni/UOx stood out for the capacity of DU matrix to control the extra heat (hot-spots) generated at its surface by the highly exothermic methanation process. At odds with the benchmark Ni/γ-Al2 O3 catalyst, the double action played by DU as a "thermal mass" and "dopant" for the nickel active phase unveiled the unique performance of Ni/UOx composites as CO2 methanation catalysts. The ability of the weakly radioactive ceramic (UOx ) to harvest waste heat for more useful purposes was demonstrated in practice within a rare example of a highly effective and long-term methanation operated under autothermal regime (i. e., without any external heating source). This finding is an unprecedented example that allows a real step-forward in the intensification of "low-temperature" methanation with an effective reduction of energy wastes. At the same time, the proposed catalytic technology can be regarded as an original approach to recycle and bring to a second life a less-severe nuclear by-product (DU), providing a valuable alternative to its more costly long-term storage or controlled disposal.

5.
Chem Rev ; 121(17): 10559-10665, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34255488

RESUMO

There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.


Assuntos
Compostos Inorgânicos de Carbono/química , Catálise , Porosidade , Compostos de Silício/química , Carbono , Óxidos , Dióxido de Silício/química
6.
ChemSusChem ; 13(20): 5468-5479, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32871050

RESUMO

In this work, we joined highly Ni-loaded γ-Al2 O3 composites, straightforwardly prepared by impregnation methods, with an induction heating setup suited to control, almost in real-time, any temperature swing at the catalyst sites (i. e., "hot spots" ignition) caused by an exothermic reaction at the heart of the power-to-gas (P2G) chain: CO2 methanation. We have shown how the combination of a poor thermal conductor (γ-Al2 O3 ) as support for large and highly interconnected nickel aggregates together with a fast heat control of the temperature at the catalytic bed allow part of the extra-heat generated by the reaction exothermicity to be reused for maintaining the catalyst under virtual isothermal conditions, hence reducing the reactor power supply. Most importantly, a highly efficient methanation scheme for substitute natural gas (SNG) production (X CO 2 up 98 % with >99 % S CH 4 ) under operative temperatures (150-230 °C) much lower than those commonly required with traditional heating setup has been proposed. As far as sustainable and environmental issues are concerned, this approach re-evaluates industrially attractive composites (and their large-scale preparation methods) for application to key processes at the heart of P2G chain while providing robust catalysts for which risks associated to nano-objects leaching phenomena are markedly reduced if not definitively suppressed.

7.
Angew Chem Int Ed Engl ; 59(48): 21613-21619, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32790005

RESUMO

Single-atom catalysts (SACs) have shown superior activity and/or selectivity for many energy- and environment-related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy-enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1 /α-MoC catalyst exhibits high activity and excellent selectivity for liquid-phase hydrogenation of substituted nitroaromatics (>99 %) and gas-phase hydrogenation of CO2 to CO (>98 %). The Pd1 /α-MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.

8.
Front Chem ; 7: 751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799233

RESUMO

The chemoselective hydrogenation of cinnamaldehyde (CAL) to the corresponding hydrocinamaldehyde (HCAL) is a type of important reactions in fine chemistry, which is critically dependent on the rational design the chemical structure of active metal. In this work, calcium promoted palladium on CNT hybrid (Ca-Pd@CNT) with monolithic structure was synthesized through one-pot alginate gel process. The catalytic performance results showed that moderate Ca promotion catalyst (Ca-Pd@CNTHCl-2h) present a superior CAL hydrogenation activity with CAL conversion of 99.9% and HCAL selectivity of 86.4% even at the lager Pd nanoparticle size (c.a. 5 nm). The characterization results show that the electron transfer between the additive Ca promoter and Pd nanoparticles (NPs) could modify the electron structure of Pd species and induce the formation of the partial positively charged Pdδ+ species on the Pd NPs surface in the Ca-Pd@CNTHCl-2h catalyst resulting to the satisfactory catalytic performance. Furthermore, the one-pot gel synthesis methodology for microscopic carbon supported catalyst could also endows its great potential industry application in heterogeneous catalysis with easily handling during the transportation and reaction, and attributed to reducing the overall pressure drop across in the fix-bed reactor.

9.
Beilstein J Nanotechnol ; 10: 1217-1227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293859

RESUMO

The rational design and synthesis of covalent triazine frameworks (CTFs) from defined dicyano-aryl building blocks or their binary mixtures is of fundamental importance for a judicious tuning of the chemico-physical and morphological properties of this class of porous organic polymers. In fact, their gas adsorption capacity and their performance in a variety of catalytic transformations can be modulated through an appropriate selection of the building blocks. In this contribution, a set of five CTFs (CTF1-5) have been prepared under classical ionothermal conditions from single dicyano-aryl or heteroaryl systems. The as-prepared samples are highly micro-mesoporous and thermally stable materials featuring high specific surface area (up to 1860 m2·g-1) and N content (up to 29.1 wt %). All these features make them highly attractive samples for carbon capture and sequestration (CCS) applications. Indeed, selected polymers from this series rank among the CTFs with the highest CO2 uptake at ambient pressure reported so far in the literature (up to 5.23 and 3.83 mmol·g-1 at 273 and 298 K, respectively). Moreover, following our recent achievements in the field of steam- and oxygen-free dehydrogenation catalysis using CTFs as metal-free catalysts, the new samples with highest N contents have been scrutinized in the process to provide additional insights to their complex structure-activity relationship.

10.
Molecules ; 23(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941846

RESUMO

The selective oxidation of H2S to elemental sulfur was carried out on a NiS2/SiCfoam catalyst under reaction temperatures between 40 and 80 °C using highly H2S enriched effluents (from 0.5 to 1 vol.%). The amphiphilic properties of SiC foam provide an ideal support for the anchoring and growth of a NiS2 active phase. The NiS2/SiC composite was employed for the desulfurization of highly H2S-rich effluents under discontinuous mode with almost complete H2S conversion (nearly 100% for 0.5 and 1 vol.% of H2S) and sulfur selectivity (from 99.6 to 96.0% at 40 and 80 °C, respectively), together with an unprecedented sulfur-storage capacity. Solid sulfur was produced in large aggregates at the outer catalyst surface and relatively high H2S conversion was maintained until sulfur deposits reached 140 wt.% of the starting catalyst weight. Notably, the spent NiS2/SiCfoam catalyst fully recovered its pristine performance (H2S conversion, selectivity and sulfur-storage capacity) upon regeneration at 320 °C under He, and thus, it is destined to become a benchmark desulfurization system for operating in discontinuous mode.


Assuntos
Compostos Inorgânicos de Carbono/química , Sulfeto de Hidrogênio/química , Níquel/química , Compostos de Silício/química , Catálise , Temperatura Baixa , Oxirredução , Enxofre/química
11.
Chem Commun (Camb) ; 53(95): 12750-12753, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29105712

RESUMO

Surface functionalized and defect enriched carbon nanotubes (oCNTs) by green ozone/H2O treatment can efficiently anchor gold nanoparticles. This Au/oCNT could be stabilized and well dispersed after thermal treatment and showed robust catalytic activity (20.6 mmol gcat-1 h-1) for the oxidative self-coupling of benzylamine to imine in solvent free conditions.

12.
ACS Appl Mater Interfaces ; 9(39): 34256-34268, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28892358

RESUMO

Cobalt particles dispersed on an oxide support form the basis of many important heterogeneous catalysts. Strong interactions between cobalt and the support may lead to irreducible cobalt oxide formation, which is detrimental for the catalytic performance. Therefore, several strategies have been proposed to enhance cobalt reducibility, such as alloying with Pt or utilization of nonoxide supports. In this work, we fabricate bimetallic PtCo supported on graphene-coated ZnO with enhanced cobalt reducibility. By employing a model/planar catalyst formulation, we show that the surface reduction of cobalt oxide is substantially enhanced by the presence of the graphene support as compared to bare ZnO. Stimulated by these findings, we synthesized a realistic powder catalyst consisting of PtCo particles grafted on graphene-coated ZnO support. We found that the addition of graphene coating enhances the surface reducibility of cobalt, fully supporting the results obtained on the model system. Our study demonstrates that realistic catalysts with designed properties can be developed on the basis of insights gained from model catalytic formulation.

13.
ACS Omega ; 2(12): 8610-8617, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457393

RESUMO

The successful future of 2D materials, which are crucial for accelerating technology development and societal requirements, depends on their efficient preparation in an economical and ecological way. Herein, we present a significant advance in the top-down exfoliation and dispersion method via an aqua colloid approach. We demonstrate that a broad family of natural oil-in-water emulsification agents with an elevated hydrophilic/lipophilic balance acts in the exfoliation of layered materials and the formation of their concentrated colloids. The concentration exceeds 45 g/L for exfoliated few-layered graphene sheets possessing a micrometer size. The exfoliation of carbon nanofibers provides one of the best known unsupported and N-undoped metal-free catalysts to date in the selective dehydrogenation of ethylbenzene to styrene. Other examples include aqua colloids of exfoliated/dispersed nitrides, carbides, or nanodiamonds.

14.
ACS Appl Mater Interfaces ; 8(44): 30099-30106, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27768269

RESUMO

This paper describes the exohedral N-decoration of multiwalled carbon nanotubes (MWCNTs) with NH-aziridine groups via [2 + 1] cycloaddition of a tert-butyl-oxycarbonyl nitrene followed by controlled thermal decomposition of the cyclization product. The chemical grafting with N-containing groups deeply modifies the properties of the starting MWCNTs, generating new surface microenvironments with specific base (Brønsted) and electronic properties. Both of these features translate into a highly versatile single-phase heterogeneous catalyst (MW@NAz) with remarkable chemical and electrochemical performance. Its surface base character promotes the Knoevenagel condensation with activity superior to that of related state of the art N-doped and N-decorated carbon nanomaterials; the N-induced electronic surface redistribution drives the generation of high-energy surface "C" sites suitable for O2 activation and its subsequent electrochemical reduction (ORR).

15.
Nat Commun ; 7: 11532, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27156575

RESUMO

Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields.

17.
Chemistry ; 21(50): 18316-27, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26503177

RESUMO

The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na-rich aluminosilicate system. A detailed time-series EMT-type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core-shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels.

18.
Chem Commun (Camb) ; 51(76): 14393-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26271207

RESUMO

The straightforward "dressing" of macroscopically shaped supports (i.e.ß-SiC and α-Al2O3) with a mesoporous and highly nitrogen-doped carbon-phase starting from food-processing raw materials is described. The as-prepared composites serve as highly efficient and selective metal-free catalysts for promoting industrial key-processes at the heart of renewable energy technology and environmental protection.

19.
J Colloid Interface Sci ; 451: 221-30, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25898117

RESUMO

The functionalization of carbon nanomaterials in controlled and selective manner and in order to stabilize small metal nanoparticles is of high interest particularly in the catalysis field. We present the µ-waves assisted few layer graphene (FLG) oxidation in water, which results in a partial sheets exfoliation and formation of oxygen functionalized carbon nanoballs, supported on highly graphitized graphene sheets. This double morphology material allows homogenous anchoring of Pt nanoparticles, while the advantages of planar and highly crystallized FLG are preserved. For comparison, acid treated FLG (conventional heating) exhibits highly hydrophobic and inert surface with carboxylic groups as anchoring sides localized at the FLG edges. Despite similar oxygen content, the performed physicochemical analyses depict different nature and localization of the oxygen/defects functionalities introduced in water (in µ-waves) and acid treated FLGs. Finally, the addition of FLG during the preparation of Pt particles-carried out by µ-wave assisted polyol method yields small nanoparticles with average size of 1nm.

20.
Small ; 11(28): 3485-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808714

RESUMO

A hybrid composite material of graphene and carbon nanotube (CNT) for high performance chemical and temperature sensors is reported. Integration of 1D and 2D carbon materials into hybrid carbon composites is achieved by coupling graphene and CNT through poly(ionic liquid) (PIL) mediated-hybridization. The resulting CNT/PIL/graphene hybrid materials are explored as active materials in chemical and temperature sensors. For chemical sensing application, the hybrid composite is integrated into a chemo-resistive sensor to detect a general class of volatile organic compounds. Compared with the graphene-only devices, the hybrid film device showed an improved performance with high sensitivity at ppm level, low detection limit, and fast signal response/recovery. To further demonstrate the potential of the hybrid films, a temperature sensor is fabricated. The CNT/PIL/graphene hybrid materials are highly responsive to small temperature gradient with fast response, high sensitivity, and stability, which may offer a new platform for the thermoelectric temperature sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...